引用本文
  •    [点击复制]
  •    [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 176次   下载 128 本文二维码信息
码上扫一扫!
无人机类脑吸引子神经网络导航技术
刘建业,杨闯,熊智,赖际舟,熊骏
0
(南京航空航天大学导航研究中心,南京 211106;先进飞行器导航、控制与健康管理工业和信息化部重点实验室,南京 211106;卫星通信与导航江苏高校协同创新中心,南京 210016)
摘要:
当前无人机在非结构化或未知环境下飞行主要采用SLAM进行导航与定位,存在如下突出问题:依赖高精度昂贵激光雷达等环境感知传感器;需要建立准确世界和无人机物理模型;受环境影响较大;自主智能水平较低,无法较好地满足无人机对导航系统的要求,需要发展自主智能的导航方式。基于吸引子神经网络的类脑导航技术,无需训练模型参数,不依赖高精度传感器,无需精确建模,且复杂环境下鲁棒性较强,具有解决上述问题的潜力。简要阐述了动物大脑导航机理,分析了吸引子神经网络和基于吸引子神经网络的类脑导航关键技术,最后讨论了吸引子类脑导航技术在无人机应用中的挑战。
关键词:  类脑导航  吸引子神经网络  位置细胞  网格细胞  无人机
DOI:
基金项目:国家自然科学基金项目(61873125, 61673208, 61703208, 61533008, 61533009);江苏省自然基金项目(BK20181291);中央高校基本科研业务费专项资金(NP2018108);江苏省六大人才高峰项目(2015-XXRJ-005)
Attractor Neural Network-based Brain-inspired Navigation Technology for UAV
LIU Jian-ye,YANG Chuang,XIONG Zhi,LAI Ji-zhou,XIONG Jun
(Navigation Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;Key Laboratory of Navigation, Guidance and Health-Management Technologies of Advanced Aerocraft, Ministry of Industry and Information Technology, Nanjing 211106, China;Satellite Communication and Navigation Collaborative Innovation Center, Nanjing 210016, China)
Abstract:
Currently, UAV mainly uses SLAM to navigate and locate itself in unstructured or unknown environment with the following problems: depending on high-precision and expensive sensors such as lidar; using probability method to build accurate physical model of the world and UAV; being greatly affected by environment; poor autonomy and intelligence, which make the SLAM method impractical in UAV. Thus it is urgent to develop a new type of navigation method for UAV. Brain-inspired navigation technology based on attractor neural network (ANN) neither needs training model parameters or accurate modeling, nor relies on high-precision sensors, but has strong robustness in complex environment, which make the technology a good candidate for solving the above problems. This paper briefly describes the mechanism of animal brain navigation, analyses the performance of ANN and ANN-based brain- inspired navigation technology, and finally discusses the challenges of ANN-based brain-inspired navigation technology in the application of UAV.
Key words:  Brain-inspired navigation  Attractor neural network  Place cell  Grid cell  UAV

用微信扫一扫

用微信扫一扫