引用本文
  •    [点击复制]
  •    [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 147次   下载 183 本文二维码信息
码上扫一扫!
基于DQN的反舰导弹火力分配方法研究
阎栋,苏航,朱军
0
(清华大学计算机科学与技术系,北京 100086)
摘要:
反舰导弹作为海上作战的主战武器,由于其精度高、射程远、威力大等特性长期以来一直被当作舰艇编队的主要防御对象。针对反舰导弹打击舰艇编队的火力分配问题,我们提出了一种基于深度Q值网络求解反舰导弹火力分配策略的算法。不同于现有的基于领域知识的方法,深度Q值网络无需依赖任何先验信息,就能够通过与模拟器的交互自动求解最佳的攻击策略。该算法使用深度神经网络拟合Q值函数,解决了传统强化学习中的状态空间过大无法遍历的问题。实验结果表明,在各种不同的舰队防御配置下,深度Q值网络求解得到的攻击策略均获得了最佳的毁伤效果。
关键词:  反舰导弹  目标分配  深度Q值网络
DOI:
基金项目:国防基础科研计划 (JCKY2017204B064)
Research on Fire Distribution Method of Anti-ship Missile Based on DQN
YAN Dong,SU Hang,ZHU Jun
(Department of Computer Science and Technology, Tsinghua University, Beijing 100086, China)
Abstract:
As the main weapon in the sea battle, the anti-ship missile has long been regarded as the main defense object of the warship formation due to its high precision, long range and large power. Aiming at the problem of firepower distribution of anti-ship missiles against ship formations, an algorithm based on deep Q-value network for solving the firepower allocation strategy of anti-ship missiles is proposed. Unlike existing domain-based methods, deep Q-value networks can automatically solve the best attack strategy by interacting with the simulator without relying on any a priori information. The algorithm uses the deep neural network to fit the Q-value function to solve the problem that the state space in traditional reinforcement learning cannot be traversed too much. The experimental results show that under various flock defense configurations, the attack strategy obtained by the deep Q-value network has obtained the best damage effect.
Key words:  Anti-ship missile  Fire distribution  DQN

用微信扫一扫

用微信扫一扫